
Physical Database Organization

www.pdbmbook.com

http://www.pdbmbook.com/

Introduction

• Physical Database Organization and Database
Access Methods

• Enterprise Storage Subsystems and Business
Continuity

2

Physical Database Organization and Database Access
Methods

• From Database to Tablespace

• Index Design

• Database Access Methods

• Join Implementations

3

From Database to Tablespace

• Physical user database: collection of index files and data
files

• Tablespace: physical container of database objects

– 1 or more physical files possibly distributed over multiple
storage devices

– every logical table is assigned to a tablespace to be persisted
physically (stored table)

– a stored table occupies one or more disk blocks or pages in the
tablespace

– can contain indexes as well

4

From Database to Tablespace

• Use of tablespaces has an impact on physical
database design

– intra query parallelism: different subsets of data can be
searched in parallel for a single, complex query

– inter query parallelism: many simple queries executed
in parallel

• Physical database design comes down to
attributing logical concepts to physical constructs

– joint responsibility of database designer and DBA

5

From Database to Tablespace

6

Index Design

• Indexes important tuning instrument to database
designer and DBA

7

Index

type

Impacts physical ordering of

tuples

Unique search

key

Dense or sparse

Primary Yes Yes Sparse

Clustered Yes No Dense or sparse

Secondar

y
No

Yes Dense

No Dense or inverted

file

Index Design

• Reasons for index creation

– efficient retrieval of rows according to certain queries
or selection criteria

– efficient performance of join queries

– enforce uniqueness on a column value or combination
of column values

– logical or physical ordering of rows in table

8

Index Design

• No standard SQL syntax for index creation

• Common syntax

CREATE [UNIQUE] INDEX INDEX_NAME

ON TABLE_NAME (COLUMN_NAME [ORDER]
{, COLUMN_NAME [ORDER]})

[CLUSTER]

9

Index Design

CREATE UNIQUE INDEX PRODNR_INDEX
ON PRODUCT(PRODNR ASC)

CREATE INDEX PRODUCTDATA_INDEX
ON PRODUCT(PRODPRICE DESC, PRODTYPE ASC)

CREATE INDEX PRODNAME_INDEX
ON PRODUCT(PRODNAME ASC)

CLUSTER

CREATE INDEX PRODSUPPLIER_INDEX
ON PRODUCT(SUPPLIERNR ASC)

10

Index Design

• Only 1 primary or clustered index per table but as many
secondary indexes as desired

• Cost of index:

– storage capacity

– update overhead

• Physical data independence: indexes can be added or
deleted without affecting logical data model or
applications

• Secondary indexes can be constructed or removed
without affecting actual data files

11

Database Access Methods

• Functioning of Query Optimizer

• Index Search (with Atomic Search Key)

• Multiple Index and Multicolumn Index Search

• Index Only Access

• Full Table Scan

12

Functioning of Query Optimizer

• SQL is declarative query language

• Different access paths exist to same data, but their time
varies

• Cost-based optimizers calculate optimal access plan
according to set of built-in cost formulas as well table(s)
involved in query, available indexes, statistical properties of
data in tables, etc.

• Query processor assists in execution of queries and consists
of DML compiler, query parser, query rewriter, query
optimizer and query executor

13

Functioning of Query Optimizer

• DBMS maintains following data in catalog

– Table related data
• number of rows, number of disk blocks occupied by table, number of

overflow records associated with table

– Column related data
• number of different column values, distribution of column values

– Index related data
• number of different values for indexed search keys and for individual

attribute types of composite search keys, number of disk blocks occupied
by index, index type (primary/clustered or secondary)

– Tablespace related data
• number and size of tables in tablespace, device specific I/O properties of

device on which table resides

14

Functioning of Query Optimizer

• Filter Factor (FF): fraction of total number of rows expected
to satisfy query predicate associated with attribute type
(e.g., CustomerID = 11349, Gender = M, Year of Birth ≥
1970)

• For queries over a single table, expected query cardinality
(QC) equals table cardinality (TC) multiplied by product of
filter factors of respective search predicates in query:
QC = TC x FF1 x FF2 x … FFn

• Default estimate for FFi is 1/NVi, with NVi representing
number of different values of attribute type Ai

15

Functioning of Query Optimizer

• Example: Customer Table

• 10000 rows (TC = 10000)

• Query:

SELECT CUSTOMERID

FROM CUSTOMERTABLE

WHERE COUNTRY = 'U.K.'

AND GENDER = 'M'

• Assume 20 countries and 2 genders:
FFCountry = 0,05 and FFGender = 0,5

• QC = 10000 x 0,05 x 0,5 = 250 16

Index Search (with Atomic Search Key)

• Single query predicate where query involves search key with only
single attribute type
SELECT *

FROM MY_TABLE

WHERE MY_KEY >= 12

AND MY_KEY <= 24

• Index search using B+-tree

17

Index Search (with Atomic Search Key)
• If query involves only single search key value, then hashing would

be efficient alternative

• As to range queries, primary or clustered index is even more
efficient than secondary index (sba versus rba)

18

Multiple Index and Multicolumn Index Search

• If search key is composite and indexed attribute types are
same as attribute types in search key, then multicolumn
index allows filtering out and retrieving only data rows that
satisfy query

• Search key with 5 attribute types, each with 10 possible
values, gives multicolumn index with 100,000 (=105) entries

– when using single column indexes instead, there would be 5
indexes, each with 10 entries (total: 50)

• For queries involving arbitrary subset of attribute types,
multicolumn index should have all attribute types involved
in query predicates in its leftmost columns

19

Multiple Index and Multicolumn Index Search

20

Multiple Index and Multicolumn Index Search

• Multicolumn indexes only appropriate for selective cases
– E.g., queries executed very often or very time critical

• Alternative is multiple single column indexes, or indexes with fewer
columns

• Example:

SELECT *

FROM MY_TABLE

WHERE A1 = VALUE1
AND A2 = VALUE2
AND …

AND An = VALUEn

21

Take intersection between sets of pointers

in index entries that correspond to desired

values of Ai

Note: Take union in case of OR!

Multiple Index and Multicolumn Index Search

22

SELECT CUSTOMERID
FROM CUSTOMERTABLE
WHERE COUNTRY = 'U.K.'
AND GENDER = 'M'

Multiple Index and Multicolumn Index Search

• For queries with many predicates, multicolumn index over all
predicates is most efficient: FF is equal to query’s FF

– unfeasible if many attribute types are used in query predicates

• As an alternative multiple indexes can be combined

• The more selective a query predicate’s FF, the more desirable
it is to use index on corresponding attribute type

• Number of block accesses determines performance, not
number of rows retrieved

– using primary index or clustered index may be more efficient than
using secondary index, especially for range queries

23

Index Only Access

• Optimizer might be 'lucky' such that query can be executed based
solely on information in index

• Example

SELECT LASTNAME

FROM CUSTOMERTABLE

WHERE COUNTRY = 'U.K.'

AND GENDER = 'M'

• Index only access if there exists a multicolumn index, or a
combination of single column indexes, over attribute types
LastName, Country and Gender

• Note: the more attribute types are included in the index, the higher
the negative performance impact of update queries!

24

Full Table Scan

• If no index is available then need to linearly search
entire table

• For very small tables, or for queries that require
nearly all of a table’s tuples anyway, full table scan
might be more efficient

• The higher query’s FF and/or the larger the table,
the less efficient a full table scan will be

25

Join Implementations

• Recap

• Nested-Loop join

• Sort-Merge join

• Hash join

26

Recap

• Database organization should also consider join
queries

• General notation of an inner join between tables R
and S :

• -operator specifies join condition

27

 R S

 r(a) s(b)

Recap

28

 R S
 r(payscale) = s(payscale)

Employee Payscale Salary
Cooper 1 10000
Gallup 2 20000
O'Donnell 1 10000
Smith 2 20000

Nested-Loop Join
• One table is denoted as inner table and other outer table

• For every row in outer table, all rows of inner table are
retrieved and compared to current row of outer table

– if join condition satisfied, both rows are joined and put in output
buffer

• Inner table traversed as many times as there are rows in
outer table

• Mainly effective if

– inner table is very small or if internal data model provides
facilities for efficient access to inner table

– FF of other predicates is very restrictive with respect to rows that
qualify in inner table

29

Nested-Loop Join

30

R S

 r(a) = s(b)

Denote S outer table

 For every row s in S do

 {for every row r in R do

 {if r(a) = s(b) then join r with s and place in output buffer}

 }

Sort-Merge Join

• Tuples in both tables first sorted according to
attribute types in join condition

• Both tables traversed in this order, with rows that
satisfy join condition combined and put in output
buffer

• Every table traversed only once (↔Nested-Loop
Join)

• Appropriate if many rows in both tables satisfy
query predicates and/or if no indexes over join
columns

31

Sort-Merge Join

32

R S

 r(a) = s(b)

 Stage 1: sort R according to r(a)

 sort S according to s(b)

 Stage 2: retrieve the first row r of R

 retrieve the first row s of S

 for every row r in R

 {while s(b) < r(a)

 read the next row s of S

 if r(a) = s(b) then join r with s and place in output buffer}

Hash Join

• Hashing algorithm applied to join attribute type(s) for table R

– corresponding rows assigned to buckets in a hash file

• Same hashing algorithm applied to join attribute type(s) of
second table S

• If hash value for S refers to non-empty bucket in hash file,
corresponding rows of R and S are compared according to
join condition.

• If join condition satisfied, rows of R and S are joined and put
in output buffer

• Performance depends on size of hash file and whether it can
be kept in internal memory

33

Enterprise Storage Subsystems and Business Continuity

• Disk Arrays and RAID

• Enterprise Storage Subsystems

• Business Continuity

34

Disk Arrays and RAID

• Storage capacity of hard disk drives increased but
performance stalled

• More efficient to combine multiple smaller
physical disk drives into one larger logical drive

– distributing data over multiple physical drives allows
for parallel retrieval

– data redundancy introduced, mitigating risk of failure

35

Disk Arrays and RAID

• RAID is a technology in which standard HDDs are
coupled to dedicated hard disk controller (the
RAID controller) to make them appear as single
logical drive

36

Disk Arrays and RAID

• Techniques applied in RAID

– Data striping

• subsections of data file (strips) distributed over multiple disks
to be read and written in parallel

• with n disks, bit or block i is written to disk (i mod n) + 1

• with bit level data striping, a byte is split into 8 individual
bits, to be distributed over available disks

• with block level data striping, each block is stored in its
entirety on single disk, but respective blocks of same file are
distributed over disks

37

Disk Arrays and RAID

• Techniques applied in RAID (contd.)

– Redundancy

• redundant data stored to increase reliability

• E.g., error detection and correcting codes such as Hamming
codes or parity bits

– Disk mirroring

• for each disk there is an exact copy (mirror) containing same
data

• mirroring consumes much more storage space than error
correcting codes

38

Disk Arrays and RAID

• Multiple RAID configurations (RAID levels)

39

RAID Level Description Fault tolerance Performance

0 Block level striping No error correction Improved read and write performance due to parallelism (multiple processes

can read individual blocks in parallel)

1 Disk mirroring Error correction due

to complete

duplication of data

Improved read performance: both disks can be accessed by different

processes in parallel

Write performance is slightly worse, since data needs to be written twice

2 Bit level striping,

with separate

checksum disk

Error correction

through Hamming

codes

Improved read performance through parallelism

Slower write performance: calculation of checksum; checksum disk involved

in every write may become a bottleneck

Disk Arrays and RAID

40

RAID Level Description Fault tolerance Performance

3 Bit level striping, with

parity bits on separate

parity disk

Error correction through parity

bits

Improved read performance through parallelism, esp. for large,

sequential transfers

Slower write performance: less calculation overhead than with

RAID 2, but parity disk involved in every write may still become a

bottleneck

4 Block level striping, with

parity bits on separate

parity disk

Error correction through parity

bits

No improved read performance for individual blocks, but support

for efficient parallel block accesses

Slower write performance; see RAID 3

5 Block level striping, with

distributed parity bits

Error correction through parity

bits

Read performance: see RAID 4

Better write performance than RAID 4: parity bits distributed over

data disks, so no parity drive as bottleneck

Disk Arrays and RAID

41

Disk Arrays and RAID

• RAID level 0 used if performance more important
than fault tolerance

• RAID level 1 mostly used for very critical data (e.g.
logfile of DBMS)

• RAID level 5 quite popular overall, as it strikes a
balance between read and write performance,
storage efficiency and fault tolerance

42

Enterprise Storage Subsystems

• Overview and Classification

• DAS (Directly Attached Storage)

• SAN (Storage Area Network)

• NAS (Network Attached Storage)

• NAS Gateway

• iSCSI / Storage over IP

43

Overview and Classification

• Starting insights

– management cost of storage exceeds purchasing cost

– need for more flexible, distributed storage
architectures, which still offer centralized management
capabilities

• Modern enterprise storage subsystems often
involve networked storage

• Network topology provides for transparent any-to-
any connectivity

44

Overview and Classification

• Characteristics

– accommodate for high performance data storage

– cater for scalability

– support data distribution and location transparency

– support interoperability and data sharing

– reliability and near continuous availability

– protection against hard- and software malfunctions
and data loss as well as hackers

– improve manageability and reduce management cost

45

Overview and Classification
• Classification according to connectivity, medium and I/O protocol

• Connectivity
– refers to how storage devices are connected to processors and/or servers

– direct versus network

46

Overview and Classification

• Medium refers to physical cabling and low-level protocol

– SCSI (Small Computer Systems Interface)
• used for high-performance and high-capacity workstations and servers

• 2 elements: command set to communicate with storage devices and
specifications for low-level protocol and cabling

– Ethernet
• long-standing standard medium for LANs and WANs

– Fibre Channel (FC)
• connect high-end storage systems to servers

• fiber optical cable or copper wire

47

Overview and Classification

• I/O protocol denotes command set to communicate
with storage device

– Block level I/O protocols

• I/O commands defined at level of requests for individual blocks

• can be based on SCSI command set

– File level I/O protocols

• commands defined at level of requests for entire files

• protocol is device independent

• E.g., Network File System (NFS, UNIX), Common Internet File
System (CIFS, Windows), HTTP, FTP

48

DAS (Directly Attached Storage)

• Storage devices directly connected to individual servers

• Block level I/O protocol used

• Medium can be standard SCSI cable, fibre channel,
Ethernet cable

• No network for traffic between servers and storage
devices

• Simplest and least expensive solution

• No capabilities for centralized storage management and
sharing unused disk capacity

• Vulnerable to hardware failures

49

DAS (Directly Attached Storage)

50

SAN (Storage Area Network)

• Storage related data transfer occurs over a dedicated network

• Servers and storage devices communicate using block level I/O
protocol

• Network provides any-to-any connectivity between servers and
storage device

• Fibre Channel commonly used as medium

• Clients and servers communicate over IP-based LAN or WAN

• Superior to DAS in terms of availability (data sharing)

• Best solution in terms of performance

• Also offers flexibility and scalability

• However, SAN complex and expensive with ever evolving standards

51

SAN (Storage Area Network)

52

NAS (Network Attached Storage)

• NAS device also called ‘NAS appliance’

– specialized device which can be ‘plugged’
straightforwardly into TCP/IP based LAN or WAN
(Ethernet)

– stripped-down file server with combination of
processor, operating system and set of hard disk
drives (no keyboard or screen)

– less expensive and complex

– accessed through file level I/O protocol
53

NAS (Network Attached Storage)

• NAS offers file system to network, with file requests
translated by NAS’s internal processor into SCSI
block I/O commands

• NAS offers flexible, simple and inexpensive facilities
to add additional storage in ‘plug and play’ fashion

• Performance typically lower than with SAN

• Indirection of file level access translated into block
level access is less efficient

54

NAS (Network Attached Storage)

55

NAS Gateway

• Similar to NAS device, but without hard disk drives;
only processor and stripped-down operating system

• Can be plugged into a TCP/IP based LAN or WAN on
one side and connected to external disk drives on
other side (using e.g., DAS or SAN)

• More flexibility and scalability than normal NAS
device

• Allows plugging existing disk array into LAN or WAN

• Can yield hybrid NAS/SAN environment
56

NAS Gateway

57

iSCSI / Storage over IP

• iSCSI (a.k.a. Internet SCSI, storage over IP) is similar to
SAN but based on Ethernet (instead of Fibre Channel)

• SCSI block level I/O commands packaged and sent over
TCP/IP network (LAN or WAN)

• In between SAN and NAS: block level disk access like SAN,
but Ethernet based like NAS

• Provides lower cost alternative to SANs

• Popular in small and medium organizations

• Can cover larger distances than FC-based SANs, but
typically slower than Fibre Channel

58

iSCSI / Storage over IP

59

iSCSI / Storage over IP

60

Technology Connectivity Medium I/O Protocol

DAS Direct attach SCSI cable, Point-to-

point FC

(or Ethernet)

SCSI block level

I/O

SAN Network

attach

FC SCSI block level

I/O

NAS + NAS

gateway

Network

attach

Ethernet File level I/O

Business Continuity

• Introduction

• Contingency Planning, Recovery Point and
Recovery Time

• Availability and Accessibility of Storage Devices

• Availability of Database Functionality

• Data Availability

61

Introduction

• Business continuity: an organization’s ability to guarantee
its uninterrupted functioning, despite possible planned or
unplanned downtime of the hard- and software
supporting its database functionality

• Planned downtime due to backups, maintenance,
upgrades, etc.

• Unplanned downtime due to malfunctioning of hardware
or software

• Disaster tolerance considers an organization’s endurance
against human or nature induced disasters

62

Contingency Planning, Recovery Point and Recovery Time

• Contingency plan formulates an organization’s
measures with respect to business continuity and
recovery

• Quantification of recovery objectives

– Recovery Time Objective (RTO) specifies amount of
downtime that is acceptable, after calamity

– Recovery Point Objective (RPO) specifies degree to
which data loss is acceptable after calamity

63

Contingency Planning, Recovery Point and Recovery Time

64

Contingency Planning, Recovery Point and Recovery Time

• Aim of contingency plan is to minimize RPO and/or
RTO

• Avoid single points of failure

– availability and accessibility of storage devices

– availability of database functionality

– availability of data itself

65

Availability and Accessibility of Storage Devices

• Networked storage avoids single points of failure
that a DAS setup implies with respect to
connectivity between servers and storage devices

• Different RAID levels not only impact RPO, but also
RTO

– mirror set-up in RAID 1 allows for uninterrupted
storage device access

– redundancy by parity bits in other RAID levels requires
some time to reconstruct the data

66

Availability of Database Functionality

• First approach is manual failover by means of spare server
with DBMS software

– negative impact on RTO

• More complex approach is clustering which refers to
multiple interconnected computer systems (nodes)
working together as unity

– improve performance by means of parallelism and/or availability
through redundancy

– automated failover where nodes in cluster take over workload
of failing node

– rolling upgrades

– better impact on RTO 67

Data Availability

• Safeguard data by means of backup and/or
replication

• Approaches

– tape backup

• database copied periodically to tape storage

• least expensive but time consuming

• also restoring is time consuming

• negative impact on RTO and RPO

68

Data Availability

• Approaches (contd.)

– hard disk backup

• more efficient than tape backup

• positive impact on RTO and RPO

– electronic vaulting

• safeguard backup copies at sufficient distance from primary
site to avoid them both being involved in same incident

• backup data is transmitted over a network to hard disk or
tape devices at secure vaulting facility or at alternate data
center

69

Data Availability

• Approaches (contd.)

– replication and mirroring

• mirroring is act of performing same write operations on two
or more identical disks simultaneously (always synchronous,
e.g. RAID level 1)

• replication is act of propagating data written to one device
over a network onto another device (synchronous, semi-
synchronous, or asynchronous)

• synchronous replication and mirroring provide near real time
redundant copies of data

70

Data Availability

• Approaches (contd.)

– Disaster tolerance

• to guarantee a tight RPO and RTO under any circumstances,
remote data replication is needed using, e.g., a WAN

• asynchronous replication less sensitive to network latency

• remote site should be fully operational including up to date
data and DBMS functionality

• in some implementations, both primary and backup DBMS
are conceived as nodes in cluster that spans both the primary
and remote data center (stretched cluster)

71

Data Availability

72

Data Availability

• Approaches (contd.)

– Transaction recovery

• transaction context must be preserved

• if overall data replication is coordinated at DBMS
level, then typically transaction context is also
transferred between DBMSs

• example is log shipping which means that logfile is
replicated between both DBMSs

• remote DBMS can use this log file for transaction
recovery

73

Conclusions

• Physical Database Organization and Database
Access Methods

• Enterprise Storage Subsystems and Business
Continuity

74

More information?

www.pdbmbook.com 75

http://www.pdbmbook.com/

